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a b s t r a c t

A nonlinear model of coupled diffusion and nth-order chemical reaction in a spherical catalyst pellet is
revisited in this paper. As we are aware, except for the linear case n = 1, no exact solutions of this model
have been reported until now. In the present paper several such solutions are given in a closed analytical
ccepted 19 January 2010
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form. The existence and uniqueness of solutions in the whole range n ≥ 0 of the reaction order and of the
Thiele modulus � is discussed in some detail.

© 2010 Elsevier B.V. All rights reserved.
th-Order reaction
xact solutions

. Introduction and problem formulation

The main goal of the present paper is to give some exact analyt-
cal steady state solutions of a highly nonlinear model of a coupled
iffusion and nth-order chemical reaction in a spherical porous cat-
lyst. A comprehensive approximate-analytical study of this model,
sing the Adomian decomposition method, has been reported few
ears ago by Shi-Bin and co-workers [1]. This latter work is the basic
eference for the present paper. A comprehensive review of further
eaction-diffusion problems in porous catalysts can be found e.g.
2].

For a first order reaction, n = 1, which represents the homoge-
eous linear case of the mathematical model specified below, an
xact analytical solution exists and has already been given by Thiele
3]. However, for n /= 1, to the best of our knowledge, no exact
nalytical solutions have been reported until now.

At isothermal conditions, the steady regime of the nth-order
eaction-diffusion process in the spherical geometric pellet is gov-
rned by equation [1]

e

(
d2c

dr2
+ 2

r

dc

dr

)
= kvcn (1)

here c is the reactant concentration in pore of catalyst pellet, De
he effective diffusion coefficient for reactant, r the distance from
he pellet core and kv the reaction rate constant. The admitted range
f the reaction order is n ≥ 0. The boundary conditions assumed are
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[1]

c|r=r0
= cs (surface of catalyst) (2)

and

dc

dr

∣∣∣
r=0

= 0 (center of catalyst) (3)

In terms of the dimensionless variables

R = r

r0
, C(R) = c(r)

cs
(4)

the boundary value problem (1)–(3) is specified by equations [1]

d2C

dR2
+ 2

R

dC

dR
= �2Cn (5)

C
∣∣
R=1

= 1,
dC

dR

∣∣∣
R=0

= 0 (6)

where � = (kvr2
0 cn−1

s /De)
1/2

denotes the Thiele modulus.
The quantities of physical interest are the concentration in the

center of catalyst

C(0) ≡ C0 (7)

as well as the concentration gradient at the surface of catalyst∣

dC/dR∣

R=1
. The latter quantity is related to the effectiveness factor

of the spherical catalyst by the relationship [1]

� = 3
�2

dC

dR

∣∣∣
R=1

(8)
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Nomenclature

c concentration
cs surface concentration (at r = r0)
C dimensionless concentration, Eq. (4)
C0 dimensionless concentration in the center of the

pellet
De effective diffusion coefficient
kv reaction rate constant
n reaction order
r radial coordinate
r0 radius of the pellet
R dimensionless radial coordinate, Eq. (4)
x transformed independent variable, Eq. (11)
y transformed dependent variable, Eq. (11)

Greek symbols

� (kvr2
0 cn−1

s /De)
1/2

, Thiele modulus
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�n upper bound of � for 0 ≤ n < 1, Eq. (33)
� effectiveness factor, Eq. (8)

or a first order reaction, the solution of the boundary value prob-
em (5) and (6) is well known [3] and reads

(R) = sinh(�R)
R sinh �

(n = 1) (9)

he corresponding concentration in the center of catalyst C0 and
he effectiveness factor � are obtained in this case as

0 = �

sinh �
, � = 3

�2

(
�

tanh �
− 1

)
(n = 1) (10)

ereafter in this paper throughout n /= 1 will be assumed.

. The autonomous boundary value problem for n /= 1

As a first step of the present approach we transform the govern-
ng Eq. (5) of the concentration field, which is a differential equation

ith variable coefficients on a finite domain, into a differential
quation with constant coefficients on a semi-infinite domain. The
eason is that such equations in general can more easily be man-
ged than those with variable coefficients. To this end, we change
rom the old variables R and C to new independent and dependent
ariables x and y, respectively, which we define by the equations

= −ln R, C(R) = R2/(1−n)y(x) (11)

ndeed, under the transformations (11), Eq. (5) goes over in the
ifferential equation with constant coefficients

′′ − 5 − n

1 − n
y′ + 2(3 − n)

(1 − n)2
y − �2yn = 0 (n /= 1) (12)

here the prime denotes differentiations with respect to the new
ndependent variable x of which range of variation is x ∈ [0,+∞]. It
s also easily shown that in the range n > 1 of the reaction order the
oundary conditions (6) go over in
(0) = 1, y′(∞) = 0 (13)

n the range 0 ≤ n < 1, however, the transformed problem admits, in
ddition to solutions satisfying the same boundary conditions (13),
lso further solutions which correspond to the divergent condi-
ion y′(∞) = ∞ in the center of catalyst, while the surface condition
(0) = 1 remains still valid also in this case (see Section 3.2).
Journal 158 (2010) 266–270 267

3. Exact solutions

3.1. Power-law solutions for 0 ≤ n < 1

A simple inspection of Eq. (12) shows that this equation admits
the constant solution

y =
[

2(3 − n)

(1 − n)2�2

]1/(n−1)

(14)

Obviously, this solution satisfies the second boundary condition
(13) identically. When, in addition, y = 1 is required, which happens
for

�2 = 2(3 − n)

(1 − n)2
≡ �2

n (15)

then also the first boundary condition (13) is satisfied identically.
Therefore, the second Eq. (11) implies that

C(R) = R2/(1−n) (16)

is a solution of Eq. (5) which satisfies the first boundary condition
(6) for all n /= 1. The second boundary condition (6), however, can
only be satisfied when the power exponent 2/(1 − n) is larger than
1. This latter condition requires −1 < n < 1. Therefore, Eq. (16) is a
solution of the original boundary value problem (5) and (6) only in
the range 0 ≤ n < 1 of the reaction order for the selected values � = �n

of the Thiele modulus given by Eq. (15). A remarkable property of
the power-law solution (16) is that it yields a vanishing reactant
concentration C0 in the center of the pellet. The effectiveness factor
(8) in this case is

� = 3(1 − n)
3 − n

(0 ≤ n < 1) (17)

In the special case of a zeroth order reaction, Eqs. (16), (15) and (17)
reduce to

C(R) = R2, �2 = 6, � = 1 (n = 0) (18)

Once the power-law solution (16) is known, it can also be “recov-
ered” from the original equation (5) directly. Indeed, rewriting Eq.
(5) in the form

1
R

d2

dR2
(RC) = �2Cn (19)

one immediately sees that (16) is an exact solution for any 0 ≤ n < 1
when the value of the respective Thiele modulus is given by Eq.
(15).

It is worth mentioning here that, similarly to the case of the
present spherical porous catalyst, power-law solutions for the
concentration field also occur in the reaction-diffusion models of
porous slabs, as being reported recently by Magyari [4].

3.2. An exact polynomial solution for n = 0

In addition to the power-law solution (18), the boundary value
problem (5) and (6) admits for the case of zeroth order reactions
also a further, more general solution. Indeed, for n = 0, Eq. (12)
reduces to the linear non-homogeneous differential equation

y′′ − 5y′ + 6y = �2 (20)

It is easy to show that

�2
(

�2
)

2x
y =
6

+ 1 −
6

e (21)

is a solution of Eq. (20) which satisfies the surface condition y(0) = 1.
However, this solution violates the asymptotic condition speci-
fied by the second Eq. (13), giving y′(∞) = ∞ instead of y′(∞) = 0,
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s already mentioned at the end of Section 2. Nevertheless, the
orresponding concentration

(R) = 1 − �2

6
(1 − R2) (22)

btained from Eq. (21) via Eq. (11), is a proper solution of the origi-
al boundary value problem (5) and (6). The corresponding reactant
oncentration in the center of the pellet is

0 = 1 − �2

6
(n = 0) (23)

hich requires �2 ≤ 6. The effectiveness factor corresponding to
he solution (22) is � = 1 for all �2 ≤ 6. It is also easily seen that (22)
oincides with the power-law solution (18) at the upper bound
max = �0 =

√
6 of its physical existence domain �2 ≤ 6.

It is worth mentioning here that, while the power-law solutions
16) cannot be recovered from the general Adomian decomposition
esults of [1], the second-order polynomial solution (22) can easily
e obtained as the special case n = 0 of Eq. (24) of [1]. Indeed, set-
ing in the latter equation n = 0, we obtain (in the notations of the
resent paper) RC = ˇR + (�2/6)R3. Dividing this equation by R and
sing the surface condition C

∣∣
R=1

= 1, the constant ˇ is determined

o ˇ = 1 − (�2/6) and thus the polynomial solution (22) is recovered
mmediately.

.3. The exact solution for n = 5

The fifth order reaction is a remarkable special case of the
utonomous boundary value problem (12) and (13) since in this
ase the coefficient of the first order derivative y′ becomes zero. As
consequence, Eq. (12) admits for n = 5 the first integral

′2 = 1
4

y2 + �2

3
y6 (24)

ow, changing in Eq. (24) from y to a new independent variable z
ccording to

=
( √

3
2�z

)1/2

(25)

e obtain the solution of Eq. (24) in the implicit form

+ x0 =
∫

dz√
1 + z2

= arcsinh(z) = arcsinh

( √
3

2�y2

)
(26)

hich in turn yields

(x) =
[ √

3
2� sinh(x + x0)

]1/2

(27)

here x0 is a constant of integration. The “initial condition” y(0) = 1
mplies x0 = arcsinh[

√
3/(2�)]. Thus, bearing in mind that accord-

ng to Eq. (11) in this case C(R) = R−1/2y(x) = R−1/2y(−ln R) holds,
fter some elementary manipulations we obtain the solution for
he dimensionless concentration in the form

(R) =
√

2

[
1 + R2 +

(
1 + 4

3
�2

)1/2
(1 − R2)

]−1/2

(28)

or the reactant concentration in the center of the pellet C0 and the
ffectiveness factor � we obtain in this case

√ [ (
4

)1/2
]−1/2
0 = 2 1 + 1 +
3

�2 (29)

= 3
2�2

[(
1 + 4

3
�2

)1/2
− 1

]
(30)
Fig. 1. Plot of the exact power-law solution (16) for n = 1/2 and � = 2
√

5, as well as
the exact solutions for (22), (9) and (28) for � = 2 and n = 0, 1 and 5, respectively.

As an illustration, in Fig. 1 the exact solution (28) is compared to
the concentration profiles described by Eqs. (9), (16) and (22) for
the reaction orders n = 1, 1/2 and 0, respectively, and the indicated
values of the Thiele modulus �. It is seen that, for the same value of
�, the larger the reaction order n, the larger the concentration C0 in
the center of catalyst. For the power-law solutions (16), which for
n = 1/2 becomes C(R) = R4 with � = 2

√
5, one has C0 = 0.

4. Existence domain and discussion

Except for Thiele’s solution (9) and the other solutions reported
in Section 3, no further exact analytical solutions of the boundary
value problem (5) and (6) were found. In all other cases the problem
has to be solved numerically. This latter task can easily be accom-
plished by a formal transcription of the two-point boundary value
problem (5) and (6) in an initial value problem with an additional
condition. In this sense, we prescribe the initial conditions

C
∣∣
R=0

= C0,
dC

dR

∣∣∣
R=0

= 0 (31)

at the “initial instant” R = 0 with C0 as an unknown parameter, and
then determine the value of C0 such that at the “final instant” R = 1
the solution C = C(R;C0) satisfies the additional condition

C(R; C0)
∣∣
R=1

= 1 (32)

The basic advantage of this approach (which actually is nothing
more that the familiar shooting method) consists of the fact that
the initial value problem (5), (31) always admits a unique solution
as a function of the parameter C0. When the additional condition
(32) also admits (for specified values of n and �) a unique solution
for C0, then the solution of the boundary value problem (5) and (6)
does exist and is unique. As an example for this procedure, we have
calculated the “initial value” C0 as a function of the Thiele modulus
� for the reaction orders n = 0.4, 0.6 and 2. The respective numer-
ical results are shown in Fig. 2, together with the exact analytical
results for n = 0, 1 and 5 as being given by Eqs. (23), (10) and (29),
respectively. This figure emphasizes the following features of the
solution space which turn out to be generally valid for the present
problem:

1. In the range n ≥ 1 of the reaction order a unique solution exists

for any specified value of n and � ≥ 0.

2. In the range 0 ≤ n < 1, the boundary value problem admits solu-
tions only in a finite interval of values 0 ≤ � ≤ �n of the Thiele
modulus �, where the corresponding solutions are unique.
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Fig. 3. Shown are the effectiveness factors � as functions of the Thiele modulus �
ions of the Thiele modulus � for the reaction orders n = 0, 0.4, 0.6 (dashed lines)
nd 1, 2 and 5 (solid lines). The dots denote the upper bounds �0.0 =

√
6 = 2.45,

0.4 =
√

130/3 = 3.80 and �0.6 =
√

30 = 5.48 of the existence domains of the solu-
ions for n = 0, 0.4, and 0.6 as given by Eq. (15). In these points, C0 = 0.

. For a specified value of n in the range 0 ≤ n < 1, the upper bound
�n of the existence domain 0 ≤ � ≤ �n as given by Eq. (15) is,

�n =
√

2(3 − n)
1 − n

(33)

The respective values (33) are marked in Fig. 2 by dots and are
associated with the power-law solutions (16) of the boundary
value problem. In these points, C0 = 0.

. The concentration C0 in the center of the pellet approaches unity
for all n ≥ 0 as � → 0.

. With increasing values of the Thiele modulus, the concentration
C0 decreases monotonically from 1 to zero for all n ≥ 0.

he property (4) is a direct consequence of the fact that the bound-
ry value problem (5), (6) admits for � = 0 the constant solution

(R) = 1 (� = 0) (34)

hich is valid for all n. Moreover, Fig. 2 suggests that the concentra-
ion C0 in the center of the pellet possesses not only at � = 0, but also
or all small values, � � 1, of the Thiele modulus a universal behav-
or, i.e. a behavior which does not depend on the reaction order n.

hen this conjecture is true, the universal dependence of C0 on �
or � � 1 must be given by the exact result (23) obtained for n = 0.
n other words,

0 = 1 − �2

6
(for all n ≥ 0, when � � 1) (35)

ust hold for all n ≥ 0 when � � 1. The exact results (9) and (29)
ield the first straightforward arguments speaking for Eq. (35).
ndeed, expanding the respective expressions of C0 in Taylor series
o the powers of �, we arrive, up to the leading order in �, precisely
o Eq. (35) proving its truth also for n = 1 and n = 5. The proof of Eq.
35) for arbitrary n can be given as follows. As a first step, we sub-
titute in the governing Eq. (5) C(R) = 1 − Y(R), where Y(R) is a small
uantity of the order of magnitude of �2 when � � 1. In this case,
o first order in the small quantities Y and �2, Eq. (5) becomes

d2Y

dR2
− 2

R

dY

dR
= �2(1 − Y)n ∼= �2(1 − nY) ∼= �2 (36)

he corresponding boundary conditions (6) go over in Y |R=1 and
Y/dR| = 0, respectively. Is easy to see that the solution of the
R=0
inear non-homogeneous Eq. (36) which satisfies the latter bound-
ry conditions is

(R) = �2

6
(1 − R2) (37)
for the reaction orders n = 0, 0.4, 0.6, 1, 2 and 5. The dots correspond to the upper
bounds �0.0 =

√
6 = 2.45, �0.4 =

√
130/3 = 3.80 and �0.6 =

√
30 = 5.48 of the exis-

tence domains of the solutions for n = 0, 0.4, and 0.6 where the values of �, as obtained
from Eq. (17), are 1, 0.6923 and 0.5, respectively.

Now, via the equation C(R) = 1 − Y(R), Eq. (37) leads for R = 0 pre-
cisely to Eq. (35), proving its universal validity for small �.

The dependence of the effectiveness factor � on �, which besides
the concentration in the center of catalyst C0 is an important char-
acteristic of engineering interest, is shown in Fig. 3 for the same
values of the reaction order n which have already been selected in
Fig. 2. An inspection of Fig. 3 shows that, except for the case n = 0
where � = 1, the effectiveness factor � is a monotonically decreasing
function of the Thiele modulus � for all values n > 0. Moreover, the
larger n, the smaller � for any given value of � (within the domain
of existence of the corresponding solutions). In the range 0 ≤ n < 1,
the curves � = �(�) terminate at the upper bounds �n of the exis-
tence domains of the respective solutions, in a full agreement with
Fig. 2. The values of � which correspond to largest admissible val-
ues �n of the Thiele modulus are given by Eq. (17). It is also worth
mentioning here that in contrast to C0 = C0(�), the function � = �(�)
does not possess a universal behavior for � � 1. Indeed, expanding
the exact results (10) and (30) in Taylor series to the powers of �,
to the leading order in �, we arrive to the results

� = 1 − �2

15
(for n = 1, when � � 1) (38)

� = 1 − �2

3
(for n = 5, when � � 1) (39)

When � → ∞, on the other hand, both the above effectiveness fac-
tors approach zero as 3/� for n = 1, and as

√
3/� for n = 5.

5. Summary and conclusions

In the present paper a nonlinear model of coupled diffusion and
nth-order chemical reaction in a spherical catalyst pellet has been
considered with the aim to report new exact analytical steady state
solutions, and to discuss the structure of the solution space in detail.
The main results obtained can be summarized as follows:

1. In the range n ≥ 1 of the reaction order a unique solution exists
for any specified value of n and � ≥ 0. For n = 5 the solution is
available in an exact analytical form (see Eq. (28)).

2. In the range 0 ≤ n < 1, the boundary value problem admits solu-

tions only in a finite interval of values 0 ≤ � ≤ �n of the Thiele
modulus �, where the corresponding solutions are unique. For a
specified value of n, the upper bound �n of the existence domain
is �n =

√
2(3 − n)/(1 − n). The solutions associated with these

special values of the Thiele modulus are the exact power-law
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solutions C(R) = R2/(1−n). In this case the concentration in the cen-
ter of catalyst is vanishing, C0 = 0 (see Fig. 2).

. The concentration C0 approaches unity for all n ≥ 0 according
to the universal law C0 = 1 − �2/6, when � → 0. With increasing
values of the Thiele modulus, the concentration C0 decreases
monotonically from 1 to zero for all n ≥ 0 (see Fig. 2).

. The effectiveness factor � is a monotonically decreasing func-
tion of the Thiele modulus � for all values n > 0. The larger n,
the smaller � for any given value of �. In the range 0 ≤ n < 1, the
curves � = �(�) terminate at the upper bounds �n of the existence

domains of the respective solutions (see Fig. 3).

he new exact analytical solutions reported in this paper have
een obtained by transforming the governing equation for the
oncentration filed, which is a differential equation with variable

[

[

Journal 158 (2010) 266–270

coefficients on a finite domain, into a differential equation with con-
stant coefficients on a semi-infinite domain. This procedure shows
the usefulness of such variable transformations in the chemical
reaction kinetics.
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